Monday, 17 April 2017

Electric field on the axis of circular uniformly charged ring

Electric field on the axis of circular uniformly charged ring

Consider a circular ring of radius 'R' having charge 'Q' which is uniformly distributed. Let the linear charge density of the ring is λ.
Then electric field will be   ----
                                                    
         As we know,           λ = Q/l    
                                     λ = Q/2πR, 
                                     λ= dQ/dl,    so      dQ= λdl ..........(1)
                                      
                                      Q= λ(2πR) ..............(2)

                                       cosφ= x/r
                                        cosφ = x/√R2+x2
As we know,       
dE = dQ/4πЄ₀r
dE = λdl/4πЄ₀r2
              dE= λdl/4πЄ₀ (√R2+x2 )2
Net electric field at point  p will be----
ഽdE = ഽ02πRdE cosφ
ഽdE = λcosφ/4πЄ₀ (R2+x2 )02πRdl
   E= λx/4πЄ₀ (√R2+x2 )(R2+x2 )[l]02πR          {since, cosφ = x/√R2+x2 }   
E= λx2πR /4πЄ₀ (R2+x2 )3/2      
 E=QX/4πЄ₀ (R2+x2 )
3/2     {since, Q=λ2πR}
       so net electric field at point p will be------------
 E = QX /4πЄ₀ (R2+x2 )3/2

Important conclusion : a) Electric field due to ring exist only in x-direction.

b)Net electric field due to ring in y-direction will be zero.
                                            Ey  =0
c) If point p is very far away from centre, i.e., x>>R,
                                       x2 >>>>R2  
so,       R2 can be neglected, then the electric field will be-
                                       E=Q/4πЄ₀x2
it means the ring will behave as a point charge.
                                                            https://youtu.be/O3D2belxKBs

No comments:

Post a Comment